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Abstract

Stein’s method provides a powerful tool for handling probabilistic distributions
with differential operators. Recently there has been a surge of research interest in
kernelizing Stein methods, covering a wide range of important applications such
as Bayesian inference [5], generative modeling [6], and goodness-of-fit tests [4],
among many others. This study intends to fill a gap in the kernelized Stein literature,
by addressing the problem of estimation and sampling of unnormalized statistical
models based on empirical examples, a challenge shared by both the machine
learning and statistics community. Experimental evidence shows encouraging
results.

1 Introduction

Unnormalized statistical models provide a flexible characterization of probability distributions using
energy potentials. However, their estimation is particularly challenging since the normalizing constant
of the energy potential typically does not enjoy a closed form expression wrt model parameters,
which prohibits the use of conventional maximal likelihood estimation (MLE). While most existing
estimation procedures crucially rely on a tractable proposal sampler that approximates the data
distribution, Hyvärinen’s score matching [2] bypasses the difficulty of specifying a good proposal by
(implicitly) minimizing the l2 discrepancy between the (unknown) data score function and the model
score function2 using only data examples.

Our work considers a kernelized Stein score matching (SSM) formulation that avoids the costly
Laplacian operator employed by Hyvärinen’s original construction. Notably, our SSM differs
significantly from existing kernel implicit gradient estimators [3, 7], which cannot be applied to
parameter estimation tasks.

The SSM we develop can be readily adapted to learn a sampler that is faithful to the empirical
examples. More explicitly, to cope with complex datasets, we model score functions with expressive
non-parametric estimators such as deep neural nets. By implicitly minimizing the kernelized Stein
discrepancy, SSM unveils the local geometry of data distribution, which defines the infinitesmal
transition flow of an Ito diffusion process. As such, samples can be easily drawn from simulated
diffusion trajectories (e.g., using a Langevin or HMC simulator).

∗Equal Contribution.
2In this work, we consider the score function defined by∇x log pθ(x), where x is the data variable and θ is

the parameter.

Accepted at ICML 2019 Workshop on Stein’s Method for Machine Learning and Statistics



2 Background

2.1 Hyvärinen’s Score Matching

Score matching was proposed in [2] for density estimation of unnormalized models. In unnorm-
lized models, the partition function (normalizing constant) is difficult to compute, which makes
the estimation task intractable using the commonly used maximum likelihood estimation (MLE)
methods. In score matching (SM), the (data) score function sp = ∇x log p(x) is used to define a
score discrepancy metric which is minimized for the parameter estimaiton task. In particular, the
score discrepancy metric for two probability distributions P (target) and Q (estimate) that possess,
respectively, density functions p and q is defined as:

D(P,Q)
∆
=

1

2

∫
χ

p(x) ||sp(x)− sq(x)||22 dx (1)

= Ex∼p
[
∆x log q(x) +

1

2
||∇x log q(x)||22

]
+ C (2)

where C is a constant term. In Eq. 1, we have considered P as our target distribution and Q as our
estimate. Note that Eq. 2 does not involve the partition function, and other than the constant it only
depends on the target distribution through the expectation. A major drawback of this approach is that,
the computation involves taking the second-order derivatives, which is costly in practice.

2.2 Kernelized Stein’s Discrepancy

Stein’s method [8] provides a general theory on obtaining bounds on distances between two probability
distributions. For a distribution P with a smooth density p, we can define a set of smooth functions
(with proper boundary conditions) F , also referred to as the Stein class of P , satisfying Ep[spf(x) +
∇xf(x)] = 0 where f ∈ F . The stein discrepancy can then be defined as:

S(P,Q) = max
f∈F

(Ep[sq(x)f(x) +∇xf(x)])2 (3)

where q is a smooth density function of the probability distributionsQ. The two distributions are equal
if and only if S(P,Q) = 0. A major drawback of this definition is that it is often computationally
intractable.

There has been recent work that combines the theory of Stein discrepancies with Reproducing Kernel
Hilbert Space (RKHS), introducing kernelized Stein discrepancies (KSDs) [1, 4]. In particular, KSDs
restrict the Stein class of functions to an RKHS consisting of functions within a unit ball making
them computationally tractable. The closed-form of KSD is defined as:

S(p, q) = Ex,x′∼P [δq,p(x)T k(x, x′)δq,p(x
′)] (4)

where δq,p(x) = sq(x)− sp(x) and k(x, x’) is an integrally strictly positive definite kernel.

2.3 Langevin Flow

Let X be a random variable that follows a distribution P . The Langevin Ito Diffusion equation defines
a stochastic process {Xt} as follows:

dXt = ∇ log p(Xt) +
√

2dWt (5)
where {Wt} is the standard Brownian motion. The ∇x log p(x) is the drifting term of Langevin
dynamics and

√
2dWt is the diffusion term. Together they define the infinitesimal transition dynamics

of a Markov chain that characterizes the target density p(x). As the system evolves, the probability
distribution of {Xt} converges to its stationary distribution p(x).

3 Stein Score Matching

For the kernelized Stein discrepancy, by iteratively applying the Stein identity, we can reformulate
the KSD as:

S(p, q) = Ex,x′∼p[uq(x, x′)] (6)
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where

uq(x, x
′) =sq(x)T k(x, x′)sq(x

′) + sq(x)T∇x′k(x, x′)

+∇xk(x, x′)Tsq(x
′) + trace(∇x,x′k(x, x′))

In practice, the kernelized Stein discrepancy is estimated using samples drawn from the distribution
p(x). Thus, this discrepancy can be computed using samples from the target distribution and score
function from the proposed distribution. As we adjust the proposed distribution q so that S(p, q)
becomes smaller and smaller, the proposed distribution q converges to the target distribution p. When
S(p, q) = 0, p = q and sp(x) = sq(x). We call this method Stein score Mmatching (SSM).

Compared with Hyvärinen’s score matching, Stein score matching avoids computing the second order
derivative of the density function, which makes it simpler and computationally more efficient.

We apply SSM to the task of parameter estimation with a number of representative toy models. The
exact parametric form of the potential function is given, and the task is to estimate the parameter
values of the model. We use 1,000 samples for training and 5,000 samples for evaluation.

The exact mathematical forms of the potential functions are summarized below.

• kidney: 1
2 ( ||x||−µ1

σ1
)2 − log(e−

1
2 (
x1−µ2
σ2

)2 + e−
1
2 (
x1+µ2
σ2

)2)

• river: − ln(e−
1
2 [
x2−w1(x;σ3)

σ1
]2 + e−

1
2 [
x2−w1(x;σ3)+w3(x;σ4,µ1)

σ2
]2)

• banana: 1
2 [( (x1−(x2/κ)2)

σ1
)2 + ( (x2−µ2)

σ2
)2]

• wave: 1
2 [x2−w1(x;σ3)

σ1
]2

where w1(x;σ3) = sin( 2πx1

σ3
) and w3(x;σ4, µ1) = 3 ∗ sigmoid(x1−µ1

σ4
)

Table 1 is the mean squared error comparison of between Stein score matching and Hyvärinen’s score
matching. Table 2 is the runtime comparison between Stein score matching and Hyvärinen’s score
matching.

Table 1: MSE Comparison for Parameter Estimation (Scaled to 1e− 3)

Dataset Kidney River Banana Wave

SSM (Ours) 6.926± .525 1.662± .268 2.681± .563 0.436± .085
SM [2] 5.011± .455 1.759± .264 2.695± .532 0.328± .078

Table 2: Runtime Comparison for Parameter Estimation (Seconds)

Dataset Kidney River Banana Wave

SSM (Ours) 0.82± .04 1.02± .03 10.90± 1.19 3.91± .07
SM [2] 1.45± .05 1.85± .05 10.21± 1.14 1.35± .02

4 Stein Langevin Network

We apply SSM and Langevin dynamics on the MNIST dataset to generate new samples. To do this,
we first project images {xi}Ni=1 to a low dimensional space {zi}Ni=1 (using autoencoder for dimension
reduction). Then we use SSM to train a neural network to learn the score function ŝq(zt) based on
samples from this low dimensional space. Finally, we generate new samples on the low dimensional
space using the Langevin stochastic differential equation: dzt = ŝq(zt) +

√
2dWt. After drawing

new samples zt’s, we convert them back to the high dimensional image space through a decoder.

We first test whether the neural network would be able to learn the score function by estimating the
gradient of log-density on a toy model of a 2D Gaussian distribution. Figure 1 shows the histogram of
2D Gaussian samples and the estimated and ground truth gradient field of log-density. The estimated
gradient matches well with the ground truth gradient.
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Figure 1: (Left) Histogram of 2D Gaussian samples. (Right): Estimated and ground truth gradient
fields of log-density of a 2D Gaussian distribution.

Figure 2: (Left) Samples in the latent space drawn by the Langevin flow. (Right): Image samples
generated by transforming the Langevin trajectory through the decoder.

Next, we try generating new images based on the MNIST data set. Figure 2 shows the sampled
trajectory of the Langevin flow and the corresponding images. We can see that the model is able to
generate digits with high fidelity and diversity.

5 Conclusion and Discussion

In this work, we explore two novel applications of Stein’s method and formulate a kernelized Stein
score matching method. In the first part, we apply this method to estimate the parameters of a
distribution based on some samples. In the second part, we use this method to estimate the score
function of an empirical distribution and propose a new generative model by combining Stein score
matching and the Langevin flow. The generated digits are diverse yet remains realistic.
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